眾所周知,New Phytologist是植物科學(xué)領(lǐng)域的頂級(jí)期刊;長(zhǎng)期以來,也是發(fā)表植物根系功能屬性及其相關(guān)研究成果的主要陣地。
近期,Colleen M. Iversen和M. Luke McCormack(Colleen M. Iversen & M. Luke McCormack, 2021)在New Phytologist上撰文‘Filling gaps in our understanding of belowground plant traits across the world: an introduction to a Vitual Issue’,重點(diǎn)介紹了根系功能屬性和根際功能屬性在生態(tài)系統(tǒng)過程中的作用的最新認(rèn)識(shí),主要關(guān)注2019年和2020年發(fā)表在New Phytologist上的根系功能屬性研究成果,并涉及該文寫作期間報(bào)道的一些“早期觀點(diǎn)”;稱贊了根系生態(tài)學(xué)家和根際生態(tài)學(xué)家借助鏟子(破壞性取樣)、同位素和專業(yè)相機(jī)(連續(xù)監(jiān)測(cè))等工具或手段在草原和森林中展開的探尋根系秘密的諸多工作,涉及諸多國(guó)內(nèi)學(xué)者的研究工作(國(guó)內(nèi)學(xué)者在根系生態(tài)學(xué)研究領(lǐng)域的影響力越來越高了)。
該文還提及細(xì)根生態(tài)數(shù)據(jù)庫(kù)(FRED,https://roots.ornl.gov/ 值得收藏的網(wǎng)址)的第三版現(xiàn)已作為一個(gè)可搜索的數(shù)據(jù)庫(kù)上線。在該版數(shù)據(jù)庫(kù)中,可以根據(jù)每位科學(xué)家的研究興趣篩選/過濾全球尺度的從根系解剖到細(xì)根動(dòng)態(tài)的細(xì)根功能屬性和分布。但與許多數(shù)據(jù)庫(kù)一樣,F(xiàn)RED的觀測(cè)數(shù)據(jù)在地域和根系功能屬性之間分布不均,阻礙了預(yù)測(cè)全球尺度根系功能屬性變異的能力。
該版數(shù)據(jù)庫(kù)收集了約4600種植物的根系功能屬性觀測(cè)結(jié)果,觀測(cè)結(jié)果的數(shù)量也大幅增加,但不同根系功能屬性類型間仍然存在顯著差異。例如,解剖功能屬性不及總觀測(cè)結(jié)果的3%,但解剖功能屬性可能比通常測(cè)量的形態(tài)功能屬性更具認(rèn)識(shí)根系功能和根系構(gòu)建成本的潛力。(國(guó)內(nèi)做根系解剖的代表性團(tuán)隊(duì)有東北林業(yè)大學(xué)王政權(quán)教授/谷加存教授團(tuán)隊(duì))
可在https://roots.ornl.gov/ 通過郵件申請(qǐng)下載FRED 3 的離線數(shù)據(jù)庫(kù)喲!
圖1 基于FRED的全球尺度細(xì)根功能屬性研究現(xiàn)狀認(rèn)識(shí)
近年來,伴隨著根系功能屬性數(shù)據(jù)的井噴式增加,相關(guān)數(shù)據(jù)庫(kù)如雨后春筍式出現(xiàn),該文梳理了地下數(shù)據(jù)庫(kù)的革新歷程,提供了相應(yīng)的網(wǎng)址,多看看,讓思想先于身體去旅行吧!
圖2 地下數(shù)據(jù)革新歷程
根系功能屬性數(shù)據(jù)庫(kù)及網(wǎng)址:
Arctic Underground (R. Hewitt & M. Mack, Northern Arizona University, https://www.assw2020.is/program-iasc/open-meetings );
BBB (Belowground Bud Bank database, Pausas et al., 2018, https://www.uv.es/jgpausas/bbb.htm);
CLO-PLA (Klime?ová et al., 2017, http://clopla.butbn.cas.cz);
FRED (Fine-Root Ecology Database, Iversen et al., 2017, http://roots.ornl.gov);
FunFun (Zanne et al., 2020, https://github.com/traitecoevo/fungaltraits);
FUNGuild (Nguyen et al., 2016, http://www.funguild.org);
GlobalFungi (Větrovsky et al., 2020, https://globalfungi.com);
GRooT (Guerrero-Ramírez et al., 2021, http://groot-database.github.io/GRooT);
Kutschera Drawings (Kutschera, 2010, https://images.wur.nl/digital/collection/coll13/search);
MyCoPortal (Miller & Bates, 2017, https://mycoportal.org);
Open Traits (Gallagher et al., 2020, http://opentraits.org);
Rhizopolis (Freschet et al., 2017, www.researchgate.net/project/Rhizopolis-Exploring-global-variation-in-fine-root-traits);
Rooty (Rooty: A Root Ideotype Toolbox to Support Improved Wheat Yields, E. Ober, National Institute of Agricultural Botany, https://iwyp.org/wp-content/uploads/sites/34/2018/08/Eric-Ober-Project.pdf);
sROOT (Bergmann et al., 2020, www.idiv.de/en/sroot.html);
TropiRoot (D. Cusack, Colorado State University, https://tropiroottrait.github.io/TropiRootTrait);
TRY (Kattge et al., 2020, www.try-db.org),
UNITE (Nilsson et al., 2019, https://unite.ut.ee).
All websites were accessed on 11 January 2021.
參考文獻(xiàn):
Colleen M. Iversen & M. Luke McCormack(2021). Filling gaps in our understanding of belowground plant traits across the world: an introduction to a Virtual Issue. New Phytologist, 231, 2097-2103. doi: 10.1111/nph.17326.